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Abstract. A numerical method is proposed for computing an ionized high-speed flow in the 
conditions of thermal and chemical nonequilibrium, taking into account the interaction of a 
moving electrically conductive continuous medium with an electromagnetic field. These flows 
are described by a fully coupled system of equations, which includes the equations of 
continuity, momentum, total energy, rotational energy, vibrational energy, electron energy, and 
mass conservation of chemical components. Electrical conductivity is determined using the 
kinetic theory. A special explicit-implicit scheme with alternation in half steps in time was 
proposed for numerical solution of rigid equations of chemical components and energy modes. 
That made it possible to solve a completely coupled system of equations with a large number 
of components and modes quickly and effectively. The developed method was used for 
numerical simulation of the physic process of interaction of a magnetic field with an ionized 
flow. The results of computations preformed by the proposed method are in satisfactory 
agreement with experimental data and computation results of other authors. 

1. Introduction 
As well known, an electromagnetic field affects an ionized gas flow. Many scientific papers are 
devoted to the study of this process (see, for example, [1,2]). Most of them, as a rule, use an 
assumption of chemical equilibrium of an ionized gas mixture and also an assumption that all energy 
modes of gas molecules are in thermal equilibrium, i.e. a flow is described by a single temperature. 
However, real high-speed gas flows, especially at high altitudes, are characterized by significant 
chemical and thermal nonequilibrium [3].  
The purpose of this work is to obtain the most complete mathematical model that describes a flow of 
an ionized high-speed gas mixture, taking into account the interaction of a moving electrically 
conductive continuous medium with an electromagnetic field. Special attention is paid to the 
calculation of electrical conductivity of such gas mixture based on the analysis of collision integrals of 
molecules and thermal motion of electrons. 
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2. Mathematical model 

2.1. Governing equations 
The equations of nonequilibrium flow within an imposed magnetic field include the equations of 
continuity, momentum, total energy, rotational energy, vibrational energy, electron energy and mass 
conservation of chemical components [3].  
The sources that take into account electromagnetic forces are introduced in the equations of 
momentum and energy:  
 u E, S= × =S j B j E  , (1) 
where B  is magnetic field strength; j  is current density; E - is electric field strength. 
The equations for rotational energy, vibrational energy, electron energy are as follows: 

 ( ) ( )R R R RE E E
t
ρ ρ ρ∂

+ = −
∂

V q

 ∇ ∇   (2) 

 ( ) ( )V, V, V, V, M, 1,...,m m m mE E E m N
t
ρ ρ ρ∂

+ = − =
∂

V q

 ∇ ∇   (3) 

 ( ) ( )e e e e eE E p E
t
ρ ρ ρ∂

+ + = −  ∂
V q

 ∇ ∇   (4) 

Here: ρ is the density of gas mixture; V is velocity vector; RE is rotational energy per unit mass of 
the entire gas mixture; V,mE is the vibrational energy of the m-th mode per unit mass of the entire gas 

mixture; eE  is electron energy per unit mass of the entire gas mixture; R V, e, , ,mq q q q  are density of 
heat fluxes: total energy, rotational energy, vibrational energy and energy of electrons, respectively; 

R V, e, ,mE E E   are the sources in the energy equations associated with energy transitions; pe is the 
electron pressure; NM is the number of vibrational modes. 
The following assumption is used: The magnetic Reynolds number is considered to be small, so the 
induced magnetic field is negligible.  
Pressure is the sum of partial pressures: 

 es
s e s

Rp T pρ
≠

= +
Μ∑   (5) 

where sΜ is the molar mass of species s; R is the universal gas constant. 
The equations of state for electrons: 

 e e e e e e
e e

3 ,
2

R RE C T p Tρ= =
Μ Μ

  (6) 

Here, the following assumptions were used: the electron dynamic pressure can be neglected and the 
excited electron states of molecules are negligible relative to the energies contained in other modes. 
For the vibrational energy, we used an approach based on the model of a harmonic oscillator, 
according to which the average number of the m-th vibrational quanta mα  per one molecule is 
determined by the formula 

 
( )V,

1
exp / 1m m

m m

r
T

α
θ

=
−

 (7) 

where mθ is a characteristic vibrational temperature of the m-th vibrational mode; V,mT is appropriate 
vibrational temperature; rm is the degree of degeneracy of the m-th mode of the molecule. 
The specific (per unit mass of the component to which this mode belongs) vibrational energy of the m-
th vibrational mode V,me  is related to mα as following: 
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( )

( )( )
( )V,

V,

/

exp / 1
m m s mm

m m
m ms m

r RRe
T

θθ α
θ

Μ
= =
Μ −

  (8) 

where ( )s mΜ is the molar mass of the species s to which the m-th vibrational mode belongs. 

Heat fluxes in the equations (2)-(4) are determined by the formulas: 

 R R V, V, e e, ,
Pr Pr Prm mE E hµ µ µ

= − = − = −q q q∇ ∇ ∇   (9) 

where eh  is the enthalpy of electrons 

 e
e e

ph E
ρ

= +   (10) 

When deriving the formulas (9), we used the assumption of similarity of heat transfer and diffusion, 
i.e. the equality of Schmidt and Prandtl numbers (Sc=Pr). The technique described in detail in [4] was 
used to calculate the coefficient of viscosity. 

2.2. Energy Exchange Mechanisms 
The source in the electron energy equation is 
 e T-e e-V, e em

m
E Q Q w eρ = − +∑

   (11) 

where e e e e
e

3/
2

Re E C T= =
Μ

; T-eQ is translation-electron (T-e) energy transfer rate; e-V,mQ is 

electron-vibration energy transfer rate. 
The source in the equation of the m-th vibrational energy is 
 V, T-V, V-V, e-V, Rad-V, ( ) V,m m m m m s m mE Q Q Q Q w eρ = + + − +

  , (12) 

where T-V,mQ  is translation-vibration (T-V) energy transfer rate; V-V,mQ is vibrational-vibrational (V-
V) energy transfer rate. 
The source in the rotational energy equation is 

 
c

R T-R R,
1

N

s s
s

E Q w eρ
=

= +∑

  , (13) 

T-RQ  - is translational-rotational (T-R) energy transfer rate; R, v,R, Rs se c T= . It is assumed that the 
exchange of rotational energy with vibrational and electron energy can be neglected. 
 
2.2.1.  Translational-electron transfer rate 
For the T-e energy transfer rate the formula of Lee was used [5]: 

 ( ) e A
T-e e e e 2

ee

83 r
r

r r

RT NQ R T T ρρ σ
π ≠

= −
Μ Μ∑  , (14) 

where erσ - are cross sections of electron collisions with heavy particles; AN is Avogadro number. 
The collision cross sections of electrons with neutral particles were calculated on the basis of the 
recommendations of Yukikazu Itikawa [6]. 
For the case of electron-ion interactions, the effective Coulomb cross section is given by [5]: 

 ( )
2

*2 2D
e,ions *

8 ln 1 9 ,
27

T cm
T
λπσ  = + 

 
  (15) 

where Debye length is  
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 B,CGS e
D 2

e,CGS CGS4
k T
n q

λ
π

=   - (16) 

 
( )

( )3
2

B,CGS e*2 D
2 64

e,CGS CGSCGS B,CGS e
4/

k T
T

N qq k T
λ

π
= =  , (17) 

B,CGSk  is the Boltzmann constant in CGS units, CGSq is the electron charge in CGS units and e,CGSN is 
the electron number density also in CGS units. 

2.2.2. Electron-vibrational energy transfer rate 
There is a significant exchange between the electron energy and the vibrational energy of molecular 
nitrogen. The exchange of the electron energy with the vibrational energy of other molecules is 
negligible. For the exchange of energy between the energy of electrons and the vibrational mode of 
nitrogen, the Landau-Teller formula is used: 

 
( )

( ) ( ) ( )
*
V, V,

e-V, 2
e e

, Ns m m e m
m s m

m

e T e
Q for s mρ

τ

Μ −
= =

Μ
  (18) 

where the relaxation time emτ is a function of electron temperature and pressure derived by Lee [7]. 

2.2.3.  The translational-rotational energy transfer rate  
For the T-R energy transfer rate, the Landau-Teller formula was used: 

 
( )*

R R
T-R

R

E T E
Q ρ

τ
−

=  , (19) 

where ( )
c

*
R v,R,

N

s s
s e

E T T C c
≠

= ∑  is equilibrium rotational energy; Rτ is rotational relaxation time, for 

which the following formula is used [8] 

 R 5
c
λτ =   (20) 

c is an average speed of molecules; λ  is an average free path length of molecules. 

2.2.4. Translational-vibrational energy transfer rate 
The Landau-Teller model is used: 

 ( )
( )*

V, V,
T-V,

m m
m s m

m

e T e
Q ρ

τ
−

=  , (21) 

where ( )*
V,me T  is the equilibrium vibrational energy of the m-th mode. The relaxation time is 

calculated by the formula 

 
1

,/m r m r r
r r

X Xτ τ
−

 =  
 
∑ ∑  , (22) 

where rX is mole fraction of species r. To calculate the times ,m rτ , the formulas from [9-11] were 
used. 

 2.2.5. Vibrational-vibrational energy transfer rate 
The general form of the V-V process is 
 * *A B A B+ +  (23) 
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where A* is a vibrationally excited state of molecule A. 
The following formulas are valid [9]: 

 ( ) ( )A B B A
V-V A B B A

AB

1 exp 1d X
dt T
α θ θα α α α

τ
 −  = + − +    

 (24) 

 ( ) ( ) ( )
[ ]

BB
V-V B A A B

AB A

exp /
1 1

exp /
A Td X

dt T
θα α α α α

τ θ
 

= + − + 
 

 (25) 

The total rate of formation of quanta of the m-th mode V-V,mα consists of all the V-V processes 
occurring with this mode. There is a following relation between the rate of energy transfer and the 
change in the number of quanta V-V,mα : 

 ( )
( )

V-V, V-V,m m ms m
s m

RQ ρ θ α=
Μ

   (26) 

To calculate the relaxation times ABτ , refer to the formulas from [9-11]. 

2.3. Electromagnetic field 
According to Ohm’s law, the current density is determined by the formula: 

( )eσ= + ×j E V B  
This form of equation neglects the Hall current for simplicity. 
Electrical conductivity eσ  is determined using the kinetic theory. The formula Yos [12] is used: 

 ( ) ( )
1 12 2

1 1e e e e
e e e

e eB e B e

Nc Nc

j j j j
j j

q X q NX N
k T k T

σ
− −

≠ ≠

   
= ∆ = ∆   

   
∑ ∑  , (27) 

where 

 ( )

( )
( ) ( )

1/2

1 e 1,120
e e e

e

28 10
3

j
j j

e j

T
RT

π
π

−
 Μ Μ

∆ = Ω 
Μ +Μ  

  (28) 

Here: ( )1,1
ijπ Ω  is diffusion collision integral; Bk  is the Boltzmann constant; eq is elementary charge; 

eX is electron mole fraction; eT  is electron temperature; eN is electron number density.  
The constant 10-20 converts square Angstroms into square meters, which is a standard unit for collision 
integrals. The recommended values of Collision Integrals for the pairs N2-e, O2-e, N-e, O-e, NO-e, C-
e, CO2-e, CO-e, CN-e, C2-e are taken from Wright et al. [13]. 

2.4. Chemical kinetics 
The following system of chemical reactions is used for the calculation of high-enthalpy air flows 

2

2

2

2

N +M 2N+M
O +M 2O+M
NO+M N+O+M
N +O NO+N
NO+O N+O











 

+ -

- + - -

- + - -

+ -
2
+ -

2

N+O NO +e
N+e N +e +e
O+e O +e +e
N+N N +e

O+O O +e











 

In some problems, the reactions involving H2O, H2, OH, H, CO2, CO, C were added (see [3]), as well 
as the reaction of cesium ionization 
 - + - -Cs+e Cs +e +e   
The details of determining reaction rates and component formation rates, as a result of chemical 
reactions, can be found in [3]. 
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3. Numerical method 

The vector form of the governing equations  in the Cartesian coordinate system is 

 ( ) ( )
t

∂
+Κ =

∂
U U S U   (29) 

where 

 ( )R V,1 V, e 1 c 1, , , , , , ,..., , , ,...,
m

T

N Nu v w E E E E E C Cρ ρ ρ ρ ρ ρ ρ ρ ρ ρ ρ −=U  , (30) 

, ,u v w  are velocity components in the Cartesian coordinate system; E - total energy; ( )Κ U  is the 

vector representation of inviscid and viscous fluxes (see [3]); ( )S U  is the source vector 

 ( ) ( )M CE R V,1 V, e 1 10, , , , , , ,..., , , ,...,
T

x y z N Nf f f s E E E E w wρ ρ ρ ρ −=S U    

   , (31) 

Here: , , ,x y z z y y z x x z z x y y x E x x x x x xf j B j B f j B j B f j B j B s j E j E j E= − = − = − = + +  

( ) ( ) ( )e e e, ,x x y z z y y y z x x z z z x y y xj E V B V B j E V B V B j E V B V Bσ σ σ= + − = + − = + −  

The most efficient way for solving system (29) is a fully coupled numerical method, i.e. a 
simultaneous solution of the entire system. In addition, it is preferable to use implicit methods in order 
to avoid strict limitations on the time step in terms of stability. 
In terms of sources, the system (29) is stiff. This applies to the electromagnetic interaction in the 
equations of momentum and total energy, and to energy transitions in the equations of rotational, 
vibrational and electronic energies, and chemical sources of species. Direct numerical solution of these 
equations requires a very small time step and huge computer resources. 
To solve this problem, we propose the following explicit-implicit scheme with alternation at half steps. 
At each time step 1n nt t t+∆ = − , a step is divided into two half-steps / 2t∆ , and the system is solved in 
two stages: 

First half step: ( ) ( ), ,
, , , ,/ 2

i j k n
i j k i j kt

∆
+Κ =

∆

U
U S U



   (32) 

Second half-step: ( ) ( ), , 1
, , , ,/ 2

i j k n
i j k i j kt

δ ++Κ =
∆

U
U S U



   (33) 

1 1
, ,k , ,k , ,k , ,k , ,k , ,k , ,k , ,k , ,k,n n n

i j i j i j i j i j i j i j i j i jδ δ δ+ +∆ = − = − ⇒ = + ∆U U U U U U U U U        (34) 

Here: , ,k
n
i jU is the value of the vector in the grid node (i,j,k) at time tn; ( ), ,

n
i j kΚ U  is a finite volume 

approximation of viscous and inviscid fluxes. 
With this approach, both physical processes are taken into account at each stage, but their explicit and 
implicit presentation alternates.  
The equation (32) is solved as a system of ordinary differential equations: 

 ( ) ( ) ( ), , , , , ,
, ,

0.5 2
n

n n
i j k i j k i j k

i j k

t t t
 ∂ − ∆ ∆ = ∆ −∆ Κ  ∂   

SI U S U U
U

   (35) 

Its solution is not a big problem. 
At the second stage, the source is presented in an explicit form, and the solution of the system (33) is 
not fundamentally different from the solution of a vector equation by a zero source. Implicit numerical 
methods for solving such a system are described in many papers, in particular [14, 3]. 
With an implicit representation of viscous and inviscid fluxes at each time step in each node of the 
grid, there is a need for multiple inversions of Jacobian matrices, as well as for carrying out 
multiplication operations of such matrices. 
In that case, all these matrices, and, most importantly, matrices that appear in intermediate 
calculations, have a general block form: 
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 11

21

 
=  
 

A 0
A

A D
  (36) 

where matrix blocks have the following sizes: 11A - 5x5; 21A - Naх5; D is a diagonal matrix of size 
Na. Here, Na is a number of additional equations; Na+5 = Neq is a total number of equations. The matrix 

11A refers to the basic Navier-Stokes equations (equations of continuity, momentum and energy). 
The main advantages of the matrix of the form (36) are: 1) its inversion is reduced to a single 
inversion of matrix 11A  and trivial matrix multiplication operations; 2) any necessary operations with 
such a matrix do not change its form, i.e. the block 12A remains zero, and the 22A block remains a 
diagonal matrix. So, even a significant increase in the number of additional equations does not lead to 
a significant increase in the cost of computer resources. 
Thus, a fully coupled numerical scheme for solving the basic system of equations, which is 
unconditionally stable, is obtained. Its solution does not impose any strict restrictions on the time step 
and does not require the inversion of large matrices.  

4. Results 

4.1. Ram-C Flight Experiment  
The most important factor influencing the interaction of a moving electrically conductive continuous 
medium with an electromagnetic field is concentration of electrons. During the 1960's a series of flight 
experiments [15] were made, during which electron number densities were measured using microwave 
reflectometers. The vehicle was a sphere-cone body, with a 9º cone half angle and a length of 1.295m. 
The calculations were carried out for altitudes of 72, 81, 85 km. 
The present case was chosen as a test case to check the results using non-equilibrium chemistry model 
1 using 7 species, N2, O2, NO, NO, N, O and e-. Cesium was included but played no part because the 
initial mass concentrations were set to zero. 
Peak electron densities, within the shock layer around the body, are compared in figure 1. The 
comparison between experiment shown by the symbols and computation is fairly good. Figure 2 
shows the change in the translational and electron temperatures along the stagnation streamline for an 
altitude of 81 km. 

  
Figure 1. Peak electron number density. Lines 

- computation; Symbols - experiment [15]. 
Figure 2. Temperatures on stagnation streamline. 81 

km. 

Figure 3 shows the electrical conductivity of the gas mixture along the stagnation streamline for an 
altitude of 81 km using various methods for calculating it. 
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Figure 3. The electrical conductivity of the gas 
mixture along the stagnation streamline for an 
altitude of 81 km using various methods of its 
calculation. 
1 - calculation using the assumption of 
thermochemical equilibrium of air; the 
translational temperature is used as a 
determinative; 
2 - calculation using the assumption of 
thermochemical equilibrium of air; electron 
temperature is used as a determining factor; 
3 - calculation of thermo-chemically non-
equilibrium. 

It is obvious that thermo-chemical nonequilibrium significantly affects the conductive properties of the 
gas mixture. 

4.2. Ziemer Experiment  
In 1959 Ziemer [16] reported the results of an experimental investigation in magneto-aerodynamics. 
He placed a hemi-spherically nosed cylinder of diameter 0.02m and made of Pyrex glass within an 
electromagnetic shock tube. A blast wave moved at Mach 21.5 into stationary air, at temperature 273K 
and pressure 9.33N/m2, past the model, producing a hypervelocity flow of ionized air.  
We chose the conditions to be within the experimental conditions of Ziemer's [16]. The method 
described in chapter 3 was used for the calculations. 
The magnetic field distribution in the free stream is that of a dipole at the origin (i.e., at the center of 
curvature of the nose radius rn). This distribution is mathematically expressed by 

 
3 3

0 03 3cos sin
2

n n
r

r rB B
r r θθ θ= +B e e   (37) 

where re  and θe  are unit vectors in the radial direction relative to the center of the cylinder and the θ 
direction with θ measured from the axis. A magnetic interaction parameter: ( )* 2 /e o nQ B r uσ ρ∞ ∞= was 
used to estimate the intensity of the electromagnetic effect. The free flow conditions for the present 
flow modeling are shown in table 1 (the concentrations of the components are given in mole 
fractions). The conductivity was taken average behind shock wave. 

Table 1. Free Stream Conditions 
Velocity 
(ms–1) 

Pressure 
(Pa) 

Temperature 
(K) 

O O2 NO N NO+ N2 

5690 3013 9813 0.05 0.1715 0.016 0.0422 0.00025 0.72018 
 
The pressure contours for the flow about the model are shown above in figures 4 and 5 with and 
without the dipole magnetic field. When the magnetic field was turned on, the standoff distance of the 
bow shock wave from the model nose increased from 0.0029m to 0.017m, a factor 5.9 times further.  
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Figure 4. Pressure countours at Q*=0 Figure 5. Pressure countours at Q*=55 

 
The increase in shock standoff according to the interaction parameter is quantified and compared with 
experimental data in figure 6. The predictions of Bush's theory [1] are compared with the results of 
computations from [17] and these computations. It is shown that there is a very good match between 
the experiments and simulations. The shock standoff distance increased by a factor of up to 6.9 times 
when the magnetic field was turned on. Since the magnetic force tends to oppose flow across the 
magnetic field lines, the effect of the applied field is to slow the flow in regions where the local 
interaction parameter is larger. 
Figure 7 shows the distribution of heat flux along the cylinder surface when calculating with and 
without the dipole magnetic field. It is obvious that the application of the electromagnetic field 
significantly reduces the heat flux into the wall. 

 

 
 

 

Figure 6. Comparison of shock standoff distances 
with experiments. 1 - calculation of Bush at 

thermochemical equilibrium [1 ]; 2 - calculation of 
Lee et all. [17]; 3 - calculation of this work; Symbols - 

experiments [16]. 

Figure 7. Comparison of surface heating-
rate distribution: 

1 - calculation at Q*=0; 
2 - calculation at Q*=55.   
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5. Conclusions 
The paper presents a numerical procedure for solving MFD problem including multi species, chemical 
reactions, rotational energy, vibrational energy and electron energy. A special explicit-implicit scheme 
with alternation in half steps in time was proposed for numerical solution of rigid equations of 
chemical components and energy modes, which made it possible to solve a completely coupled system 
of equations with a large number of components and modes quickly and effectively. Two different test 
cases were simulated using this numerical tool, showing an excellent match with published data and 
computations. In the first case, RAM-C flow case demonstrated the accuracy of the non-equilibrium 
flow solver module. In the second case, change in the shock standoff distance caused by applied 
magnetic fields is numerically computed and compared with Ziemer's experiments.  

6. References 
[1] Bush B 1958 J. Aerosp. Sci. 25 685-90 
[2] Poggic J and Gaitonde D 2002 Phys. Fluids. 14 1720-31 
[3] Molchanov A 2017 Mathematical Modeling of Hypersonic Homogeneous and Heterogeneous      

 Non-equilibrium Flows in the Presence of Complex Radiation-convective Heat Exchange
 (Moscow: MAI) chapter 4 pp 44–51 

[4] Scalabrin L 2007 Numerical Simulation of Weakly Ionized Hypersonic Flow over Reentry 
 Capsules (Ann Arbor, Michigan: The University of Michigan) pp.21-25 

[5] Lee J 1985  Progress in Aeronautics and Astronautics: Thermal-Design of Aeroassisted Orbital 
 Transfer Vehicles vol 96, ed H F Nelson (New York: AIAA) pp 3-53 

[6] Itikawa Y 2006 J. Phys. Chem. Ref. Data 35 31-53 
[7] Lee J 1986 Progress in Aeronautics and Astronautics: Thermophysical Aspects of Re-entry 

 Flows vol 103, ed J N Moss and C D Scott (New York: AIAA) pp 197-224 
[8] Gokcen T 1991  Hypersonic Flows for Reentry Problems (Berlin: Springer-Verlag)  
[9] Losev S, Potapkin B, Macheret S and Chernyi G 2004 Physical and Chemical Processes in Gas 

 Dynamic (Richmond, TX: AIAA) 
[10] Blauer J and Nickerson G 1974 A Survey of Vibrational Relaxation Rate Data for Processes 

 Important to CO2-N2-H2O Infrared Plume Radiation AIAA Paper 1974-536 
[11] Ashratov E and Dubinskaya N 1977 Investigation of nozzle flows with vibrational relaxation. 

 Computational Methods and Programming (Moscow: MGU) pp 96-115 
[12] Yos J 1963 Transport Properties of Nitrogen, Hydrogen, Oxygen, and Air to 30,000 K 

 (Wilmington: Ma Research and Advanced Development Div) pp 5-73 
[13] Wright M, Bose D, Palmer G. and Levin E 2005 AIAA J. 43 2558–64 
[14] MacCormack R 2008 Flow Simulations within Strong Magnetic Fields AIAA Paper 2008-1070 
[15] Granthan W 1970 Flight results of 25,00 foot per second reentry experiment using microwave 

 reflectometers to measure plasma electron density and standoff distance (Hampton, VA: 
 NASA TN D-6062) pp 1-92 

[16] Ziemer R 1959 ARS J. 29 642-7 
[17] Lee J, Kim T and MacCormack R 2015 Simulation of Hypersonic Flow within Electromagnetic 

 Fields for Heat Flux Mitigation AIAA Paper 2015-3503 


